Machine learning y data science con scikit-learn y pyspark

Aprende las principales técnicas de machine learning y ciencia de datos para aplicarlas en proyectos con python

Machine learning y data science con scikit-learn y pyspark
Machine learning y data science con scikit-learn y pyspark

Machine learning y data science con scikit-learn y pyspark udemy course

Aprende las principales técnicas de machine learning y ciencia de datos para aplicarlas en proyectos con python

  • Este curso pretende ser una introducción a las técnicas más relevantes de Machine Learning y mostrar ejemplos de aplicación de estas técnicas. Que sirva para conocer qué técnicas existen, en qué se fundamentan y sobre qué tipos de problemas pueden aplicarse. 

  • El enfoque será teórico-práctico y se hará uso del lenguaje de programación Python y del toolkit Scikit Learn. Se recomienda a los alumnos instalarse ANACONDA en su plataforma habitual. ANACONDA incluye Python, Scikit-Learn y Matplotlib. La versión de python que utilizaremos será la 3.6.

  • También veremos pyspark como plataforma de desarrollo de aplicaciones distribuídas

  • Entre los principales objetivos podemos destacar:

  • Introducir los conceptos de ciencias de datos y machine learning.

  • Introducir las principales librerías que podemos encontrar en python para aplicar técnicas de machine learning a los datos.

  • Introducir las principales librerías que podemos encontrar en python para tratamiento y visualización de datos

  • Dar a conocer los pasos para construir un modelo de machine learning, desde la adquisición de datos,pasando por la generación de funciones, hasta la selección de modelos.

  • Dar a conocer los principales algoritmos para resolver problemas de machine learning.

  • Introducir scikit-learn como herramienta para resolver problemas de machine learning.

  • Introducir pyspark como herramienta para aplicar técnicas de big data y map-reduce a los datos.

  • Conocer y aplicar algoritmos de machine learning con pyspark.

  • Introducir los sistemas de recomendación basados en contenidos